Semiparametric and Nonparametric Econometrics

· Springer Science & Business Media
3.0
1 条评价
电子书
172
评分和评价未经验证  了解详情

关于此电子书

Over the last three decades much research in empirical and theoretical economics has been carried on under various assumptions. For example a parametric functional form of the regression model, the heteroskedasticity, and the autocorrelation is always as sumed, usually linear. Also, the errors are assumed to follow certain parametric distri butions, often normal. A disadvantage of parametric econometrics based on these assumptions is that it may not be robust to the slight data inconsistency with the particular parametric specification. Indeed any misspecification in the functional form may lead to erroneous conclusions. In view of these problems, recently there has been significant interest in 'the semiparametric/nonparametric approaches to econometrics. The semiparametric approach considers econometric models where one component has a parametric and the other, which is unknown, a nonparametric specification (Manski 1984 and Horowitz and Neumann 1987, among others). The purely non parametric approach, on the other hand, does not specify any component of the model a priori. The main ingredient of this approach is the data based estimation of the unknown joint density due to Rosenblatt (1956). Since then, especially in the last decade, a vast amount of literature has appeared on nonparametric estimation in statistics journals. However, this literature is mostly highly technical and this may partly be the reason why very little is known about it in econometrics, although see Bierens (1987) and Ullah (1988).

评分和评价

3.0
1 条评价

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。