Finite Geometry and Combinatorial Applications

· London Mathematical Society Student Texts Book 82 · Cambridge University Press
Ebook
299
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The projective and polar geometries that arise from a vector space over a finite field are particularly useful in the construction of combinatorial objects, such as latin squares, designs, codes and graphs. This book provides an introduction to these geometries and their many applications to other areas of combinatorics. Coverage includes a detailed treatment of the forbidden subgraph problem from a geometrical point of view, and a chapter on maximum distance separable codes, which includes a proof that such codes over prime fields are short. The author also provides more than 100 exercises (complete with detailed solutions), which show the diversity of applications of finite fields and their geometries. Finite Geometry and Combinatorial Applications is ideal for anyone, from a third-year undergraduate to a researcher, who wishes to familiarise themselves with and gain an appreciation of finite geometry.

About the author

Simeon Ball is a senior lecturer in the Department of Applied Mathematics IV at Universitat Politècnica de Catalunya, Barcelona. He has published over 50 articles and been awarded various prestigious grants, including the Advanced Research Fellowship from EPSRC in the UK and the Ramon y Cajal grant in Spain. In 2012 he proved the MDS conjecture for prime fields, which conjectures that all linear codes over prime fields that meet the Singleton bound are short. This is one of the oldest conjectures in the theory of error-correcting codes.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.