Leibniz on the Parallel Postulate and the Foundations of Geometry: The Unpublished Manuscripts
Vincenzo De Risi
Jan 2016 · Science Networks. Historical StudiesBook 51 · Birkhäuser
Ebook
195
Pages
Sample
reportRatings and reviews aren’t verified Learn More
About this ebook
This book offers a general introduction to the geometrical studies of Gottfried Wilhelm Leibniz (1646-1716) and his mathematical epistemology. In particular, it focuses on his theory of parallel lines and his attempts to prove the famous Parallel Postulate. Furthermore it explains the role that Leibniz’s work played in the development of non-Euclidean geometry. The first part is an overview of his epistemology of geometry and a few of his geometrical findings, which puts them in the context of the seventeenth-century studies on the foundations of geometry. It also provides a detailed mathematical and philosophical commentary on his writings on the theory of parallels, and discusses how they were received in the eighteenth century as well as their relevance for the non-Euclidean revolution in mathematics. The second part offers a collection of Leibniz’s essays on the theory of parallels and an English translation of them. While a few of these papers have already been published (in Latin) in the standard Leibniz editions, most of them are transcribed from Leibniz’s manuscripts written in Hannover, and published here for the first time. The book provides new material on the history of non-Euclidean geometry, stressing the previously neglected role of Leibniz in these developments.
This volume will be of interest to historians in mathematics, philosophy or logic, as well as mathematicians interested in non-Euclidean geometry.
Series
Rate this ebook
Tell us what you think.
Reading information
Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.