The dataset contains various features related to customer behavior, such as credit history, income, employment status, loan amount, and more. We analyze the distribution of these features to gain insights into their characteristics and potential impact on loan default. Next, we preprocess the data by handling missing values, encoding categorical variables, and normalizing numerical features. This ensures that the data is in a suitable format for training machine learning models.
To predict the risk flag for loan default, we apply various machine learning models. We start with logistic regression, which models the relationship between the input features and the probability of loan default. We evaluate the model's performance using metrics such as accuracy, precision, recall, and F1-score.
Next, we employ decision tree-based algorithms, such as random forest and gradient boosting, which can capture non-linear relationships and interactions among features. These models provide better predictive power and help identify important features that contribute to loan default. Additionally, we explore support vector machines (SVM), which aim to find an optimal hyperplane that separates the loan default and non-default instances in a high-dimensional feature space. SVMs can handle complex data distributions and can be tuned to optimize the classification performance.
After evaluating the performance of these machine learning models, we turn our attention to deep learning techniques. We design and train an Artificial Neural Network (ANN) to predict the risk flag for loan default. The ANN consists of multiple layers of interconnected neurons that learn hierarchical representations of the input features.
We configure the ANN with several hidden layers, each containing a varying number of neurons. We use the ReLU activation function to introduce non-linearity and ensure the model's ability to capture complex relationships. Dropout layers are incorporated to prevent overfitting and improve generalization.
We compile the ANN using the Adam optimizer and the binary cross-entropy loss function. We train the model using the preprocessed dataset, splitting it into training and validation sets. The model is trained for a specific number of epochs, with a defined batch size.
Throughout the training process, we monitor the model's performance using metrics such as loss and accuracy on both the training and validation sets. We make use of early stopping to prevent overfitting and save the best model based on the validation performance. Once the ANN is trained, we evaluate its performance on a separate test set. We calculate metrics such as accuracy, precision, recall, and F1-score to assess the model's predictive capabilities in identifying loan default risk.
In conclusion, this project involves the exploration of a loan dataset, preprocessing of the data, and the application of various machine learning models and a deep learning ANN to predict the risk flag for loan default. The machine learning models, including logistic regression, decision trees, SVM, and ensemble methods, provide insights into feature importance and achieve reasonable predictive performance. The deep learning ANN, with its ability to capture complex relationships, offers the potential for improved accuracy in predicting loan default risk. By combining these approaches, we can assist financial institutions in making informed decisions and managing loan default risks more effectively.
Vivian Siahaan is a fast-learner who likes to do new things. She was born, raised in Hinalang Bagasan, Balige, on the banks of Lake Toba, and completed high school education from SMAN 1 Balige. She started herself learning Java, Android, JavaScript, CSS, C ++, Python, R, Visual Basic, Visual C #, MATLAB, Mathematica, PHP, JSP, MySQL, SQL Server, Oracle, Access, and other programming languages. She studied programming from scratch, starting with the most basic syntax and logic, by building several simple and applicable GUI applications. Animation and games are fields of programming that are interests that she always wants to develop. Besides studying mathematical logic and programming, the author also has the pleasure of reading novels. Vivian Siahaan has written dozens of ebooks that have been published on Sparta Publisher: Data Structure with Java; Java Programming: Cookbook; C ++ Programming: Cookbook; C Programming For High Schools / Vocational Schools and Students; Java Programming for SMA / SMK; Java Tutorial: GUI, Graphics and Animation; Visual Basic Programming: From A to Z; Java Programming for Animation and Games; C # Programming for SMA / SMK and Students; MATLAB For Students and Researchers; Graphics in JavaScript: Quick Learning Series; JavaScript Image Processing Methods: From A to Z; Java GUI Case Study: AWT & Swing; Basic CSS and JavaScript; PHP / MySQL Programming: Cookbook; Visual Basic: Cookbook; C ++ Programming for High Schools / Vocational Schools and Students; Concepts and Practices of C ++; PHP / MySQL For Students; C # Programming: From A to Z; Visual Basic for SMA / SMK and Students; C # .NET and SQL Server for High School / Vocational School and Students. At the ANDI Yogyakarta publisher, Vivian Siahaan also wrote a number of books including: Python Programming Theory and Practice; Python GUI Programming; Python GUI and Database; Build From Zero School Database Management System In Python / MySQL; Database Management System in Python / MySQL; Python / MySQL For Management Systems of Criminal Track Record Database; Java / MySQL For Management Systems of Criminal Track Records Database; Database and Cryptography Using Java / MySQL; Build From Zero School Database Management System With Java / MySQL.
Rismon Hasiholan Sianipar was born in Pematang Siantar, in 1994. After graduating from SMAN 3 Pematang Siantar 3, the writer traveled to the city of Jogjakarta. In 1998 and 2001 the author completed his Bachelor of Engineering (S.T) and Master of Engineering (M.T) education in the Electrical Engineering of Gadjah Mada University, under the guidance of Prof. Dr. Adhi Soesanto and Prof. Dr. Thomas Sri Widodo, focusing on research on non-stationary signals by analyzing their energy using time-frequency maps. Because of its non-stationary nature, the distribution of signal energy becomes very dynamic on a time-frequency map. By mapping the distribution of energy in the time-frequency field using discrete wavelet transformations, one can design non-linear filters so that they can analyze the pattern of the data contained in it. In 2003, the author received a Monbukagakusho scholarship from the Japanese Government. In 2005 and 2008, he completed his Master of Engineering (M.Eng) and Doctor of Engineering (Dr.Eng) education at Yamaguchi University, under the guidance of Prof. Dr. Hidetoshi Miike. Both the master's thesis and his doctoral thesis, R.H. Sianipar combines SR-FHN (Stochastic Resonance Fitzhugh-Nagumo) filter strength with cryptosystem ECC (elliptic curve cryptography) 4096-bit both to suppress noise in digital images and digital video and maintain its authenticity. The results of this study have been documented in international scientific journals and officially patented in Japan. One of the patents was published in Japan with a registration number 2008-009549. He is active in collaborating with several universities and research institutions in Japan, particularly in the fields of cryptography, cryptanalysis and audio / image / video digital forensics. R.H. Sianipar also has experience in conducting code-breaking methods (cryptanalysis) on a number of intelligence data that are the object of research studies in Japan. R.H. Sianipar has a number of Japanese patents, and has written a number of national / international scientific articles, and dozens of national books. R.H. Sianipar has also participated in a number of workshops related to cryptography, cryptanalysis, digital watermarking, and digital forensics. In a number of workshops, R.H. Sianipar helps Prof. Hidetoshi Miike to create applications related to digital image / video processing, steganography, cryptography, watermarking, non-linear screening, intelligent descriptor-based computer vision, and others, which are used as training materials. Field of interest in the study of R.H. Sianipar is multimedia security, signal processing / digital image / video, cryptography, digital communication, digital forensics, and data compression / coding. Until now, R.H. Sianipar continues to develop applications related to analysis of signal, image, and digital video, both for research purposes and for commercial purposes based on the Python programming language, MATLAB, C ++, C, VB.NET, C # .NET, R, and Java.